itgle.com
更多“设y=ln(cosx),则微分dy等于: ”相关问题
  • 第1题:

    设y=x2cosx+2x+e,则y′=.


    答案:
    解析:
    【答案】2xcosx-x2sinx+2xIn2【考情点拨】本题考查了一元函数的一阶导数的知识点.
    【应试指导】(x2cosx)'=2xcosx-x2sinx,(2x)'=2x·In2,e'=0。所以y'=2xcosx-x2sinx+2xIn2.

  • 第2题:

    设函数y=ln(x2+1),求dy.


    答案:
    解析:

  • 第3题:

    若函数z=ln(xy)/y,则当x=e,y=e-1时,全微分dz等于( )。

    A. edx + dy B. e2dx-dy C. dx + e2dy D. edx+e2dy


    答案:C
    解析:
    正确答案是C。

  • 第4题:

    设y=cosx,则y′′=( )

    A.sinx
    B.cosx
    C.-cosx
    D.-sinx

    答案:C
    解析:
    【考情点拨】本题考查了函数的二阶导数的知识点.【应试指导】y=cosx,y'=-sinx,y''=-cosx.

  • 第5题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    1

    B

    2

    C

    3

    D

    4


    正确答案: B
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第6题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″-y′+y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′=0

    D

    y′+2y=0


    正确答案: B
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第7题:

    单选题
    设函数ψ(x)具有二阶连续导数,且ψ(0)=ψ′(0)=0,并已知yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则ψ(x)等于(  )。
    A

    (xsinx)/2

    B

    x3-x2/2

    C

    x2ex

    D

    (xsinx)/2+C1cosx+C2sinx


    正确答案: A
    解析:
    由于yψ(x)dx+[sinx-ψ′(x)]dy=0是一个全微分方程,则∂Q/∂x=∂P/∂y,ψ″(x)+ψ(x)=cosx。从选项的结构中,可以看出,B、C项无正余弦,一定不是ψ″(x)+ψ(x)=cosx的特解,又因为(xsinx)/2+C1cosx+C2sinx中含有自由常数,故D项不是特解。将A项代入ψ″(x)+ψ(x)=cosx,等式两边相等,故A项是该方程特解。

  • 第8题:

    单选题
    设方程x2+y2+z2=4z确定可微函数z=z(x,y),则全微分dz等于(  )。[2014年真题]
    A

    (ydx+xdy)/(2-z)

    B

    (xdx+ydy)/(2-z)

    C

    (dx+dy)/(2+z)

    D

    (dx-dy)/(2-z)


    正确答案: C
    解析:
    对等式两边分别同时求导,得:2xdx+2ydy+2zdz=4dz。所以dz=(xdx+ydy)/(2-z)

  • 第9题:

    填空题
    设y=f[(2x-1)/(x+1)],f′(x)=ln(x1/3),则dy/dx____。

    正确答案: ln[(2x-1)/(x+1)]/(x+1)2
    解析:
    令u=(2x-1)/(x+1),则u′(x)=3/(x+1)2。dy/dx=f′(u)·u′(x)=ln(u1/3)·3/(x+1)2=ln[(2x-1)/(x+1)]/(x+1)2

  • 第10题:

    单选题
    设y=ln(cosx),则微分dy等于(  )。[2012年真题]
    A

    dx/cosx

    B

    cotxdx

    C

    -tanxdx

    D

    -dx/(cosxsinx)


    正确答案: D
    解析:
    等式两边同时微分,得:dy=f′(x)dx=(-sinx)dx/cosx=-tanxdx。

  • 第11题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    ln1

    B

    0

    C

    sin1

    D

    1


    正确答案: A
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第12题:

    单选题
    设y=ex(c1sinx+c2cosx)(c1、c2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为(  )。
    A

    y″+2y′+2y=0

    B

    y″-2y′+2y=0

    C

    y″-2y′-2y=0

    D

    y″+2y′+2y=0


    正确答案: A
    解析:
    根据题中所给的通解y=ex(c1sinx+c2cosx)的结构可知,所求方程对应的特征根为λ12=1±i,特征方程为[λ-(1+i)][λ-(1-i)]=λ2-2λ+2=0,则所求方程为y″-2y′+2y=0。

  • 第13题:

    设函数z=ln(x+y),则全微分dz=________.


    答案:
    解析:

  • 第14题:

    设y=1n(cosx),则微分dy等于:


    答案:C
    解析:

  • 第15题:

    设Y=sinx+COSx,则dy等于().

    A.(cosx+sinx)dx
    B.(-cosx+sinx)dx
    C.(cosx-sinx)dx
    D.(-cosx-sinx)dx

    答案:C
    解析:
    由微分的基本公式及四则运算法则可得因此选C.

  • 第16题:

    设,y=COSx,则y′等于().

    A.-sinx
    B.sinx
    C.-cosx
    D.cosx

    答案:A
    解析:
    由导数的基本公式可知,因此选A.

  • 第17题:

    填空题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=____。

    正确答案: 1
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。

  • 第18题:

    单选题
    微分方程ydx+(x-y)dy=0的通解是(  )。[2010年真题]
    A

    (x-y/2)y=C

    B

    xy=C(x-y/2)

    C

    xy=C

    D

    y=C/ln(x-y/2)


    正确答案: D
    解析:
    微分方程ydx+(x-y)dy=0可写成ydx+xdy=ydy,右端仅含y,求积分得y2/2。左端既含x又含y,它不能逐项积分,但却可以化成d(xy),因此,直接求积分得到xy,从而便得到微分方程的隐式解:xy=y2/2+C,即(x-y/2)y=C。

  • 第19题:

    单选题
    设函数φ(x)具有二阶连续导数且φ(0)=0,并且已知yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,则φ(x)=(  )。
    A

    -ex/2+(cosx)/2+(sinx)/2

    B

    x3-x2/2+1

    C

    x2ex-2

    D

    (xcosx)/2+C1cosx+C2sinx


    正确答案: D
    解析:
    由于yφ(x)dx+[sinx-φ(x)]dy=0是一个全微分方程,故∂Q/∂x=∂P/∂y即cosx-φ′(x)=φ(x)。即φ′(x)+φ(x)=cosx。解此一阶微分方程得φ(x)=cex+(cosx)/2+(sinx)/2。又φ(0)=0,代入上式得c=-1/2,故φ(x)=-ex/2+(cosx)/2+(sinx)/2。

  • 第20题:

    单选题
    下列函数中,可作为某二阶微分方程的通解的是(  )。
    A

    y=c1x2+c2x+c3

    B

    x2+y2=c

    C

    y=ln(c1cosx)+ln(c2sinx)

    D

    y=c1sin2x+c2cos2x


    正确答案: D
    解析:
    A项中,含有三个独立的任意常数,则A项为三阶微分方程的通解;B项中,含有一个独立的任意常数,则B项为一阶微分方程的通解;C项中,因为y=ln(c1cosx)+ln(c2sinx)=ln|c1|+ln|c2|+ln|cosx|+ln|sinx|=c+ln|cosx|+ln|sinx|。故C项中含有一个独立的任意常数,则C项为一阶微分方程的通解。

  • 第21题:

    单选题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=(  )。
    A

    (ln2-1)dx

    B

    (l-ln2)dx

    C

    (ln2-2)dx

    D

    ln2dx


    正确答案: C
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第22题:

    单选题
    设函数y=y(x)由方程2xy=x+y所确定,则dy|x=0=(  )。
    A

    ln2-1

    B

    (ln2-1)dx

    C

    ln2+1

    D

    (ln2+1)dx


    正确答案: D
    解析:
    2xy=x+y等式两边求微分,得2xyln2d(xy)=dx+dy,即2xyln2(xdy+ydx)=dx+dy。当x=0时,y=1,代入上式得dy|x0=(ln2-1)dx。

  • 第23题:

    单选题
    设函数y=y(x)由方程ln(x2+y)=x3y+sinx确定,则(dy/dx)|x=0=(  )。
    A

    0

    B

    1

    C

    2

    D

    e


    正确答案: B
    解析:
    ln(x2+y)=x3y+sinx两边同时对x求导,得(2x+y′)/(x2+y)=3x2y+x3y′+cosx,当x=0时,y=1,代入上式得y′(0)=1。