itgle.com
更多“函数f(x,y)在点(x,y)处偏导数存在是f(x,y)在点(x,y)处可微分的()条件。”相关问题
  • 第1题:

    函数f(x,y)在点P0(x0,y0)处有一阶偏导数是函数在该点连续的(  )。

    A、必要条件
    B、充分条件
    C、充分必要条件
    D、既非充分又非必要条件

    答案:D
    解析:

  • 第2题:

    函数z=f(x,y)在点(x,y)处的偏导数存在是函数在该点可微的()

    A.必要条件
    B.充分条件
    C.既非必要又非充分条件
    D.充要条件

    答案:A
    解析:
    因为对于二元函数而言,在某点的偏导数存在,未必推出在该点可微,但是二元函数在某点可微,则在该点的偏导数一定存在,故应选A答案.

  • 第3题:

    设y=f(x)是(a,b)内的可导函数,x,x+△x是(a,b)内的任意两点,则:

    A. △y=f’(x)△x
    B.在x,x+△x之间恰好有一点ξ,使△y=f’(ξ)△x
    C.在x,x+△x之间至少存在一点ξ,使△y=f’(ξ)△x
    D.在x,x+△x之间的任意一点ξ,使△y=f’(ξ)△x

    答案:C
    解析:

  • 第4题:

    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是( )。
    A. f(x,y)的极值点一定是f(x,y)的驻点
    B.如果P0是f(x,y)的极值点,则P0点处B2-AC)
    C.如果P0是可微函数f(x,y)的极值点,则P0点处df=0
    D.f(x,y)的最大值点一定是f(x,y)的极大值点


    答案:C
    解析:
    提示:如果P0是可微函数f(x,y)的极值点,由极值存在必要条件,在P0点处有

  • 第5题:

    若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()

    • A、连续
    • B、偏导数存在
    • C、偏导数连续
    • D、切平面存在

    正确答案:C

  • 第6题:

    z=f(x,y)在P0(x0,y0)一阶偏导数存在是该函数在此点可微的什么条件()?

    • A、必要条件
    • B、充分条件
    • C、充要条件
    • D、无关条件

    正确答案:A

  • 第7题:

    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。

    • A、f(x,y)的极值点一定是f(x,y)的驻点
    • B、如果P0是f(x,y)的极值点,则P0点处B2-AC<0
    • C、如果P0是可微函数f(x,y)的极值点,则P0点处df=0
    • D、f(x,y)的最大值点一定是f(x,y)的极大值点

    正确答案:C

  • 第8题:

    下列结论不正确的是()。

    • A、y=f(x)在点x0处可微,则f(x)在点x0处连续
    • B、y=f(x)在点x0处可微,则f(x)在点x0处可导
    • C、y=f(x)在点x0处连续,则f(x)在点x0处可微
    • D、y=f(x)在点x0处可导,则f(x)在点x0处连续

    正确答案:C

  • 第9题:

    单选题
    以下关于二元函数的连续性的说法正确是(  )。
    A

    若f(x,y)沿任意直线y=kx在点x=0处连续,则f(x,y)在(0,0)点连续

    B

    若f(x,y)在点(x0,y0)点连续,则f(x0,y)在y0点连续,f(x,y0)在x0点连续

    C

    若f(x,y)在点(x0,y0)点处偏导数fx′(x0,y0)及fy′(x0,y0)存在,则f(x,y)在(x0,y0)处连续

    D

    以上说法都不对


    正确答案: C
    解析:
    根据二元函数f(x,y)在(x0,y0)出连续的定义可知B项正确。

  • 第10题:

    单选题
    考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导数存在。若用“P⇒Q”表示可由性质P推出Q,则有(  )。
    A

    ②⇒③⇒①

    B

    ③⇒②⇒①

    C

    ③⇒④⇒①

    D

    ③⇒①⇒④


    正确答案: C
    解析:
    根据二元函数连续、可微及可导的关系可知②⇒③⇒①、②⇒③⇒④。

  • 第11题:

    单选题
    若z=f(x,y)在点(x0,y0)处可微,则在点(x0,y0)处,下列结论不正确的是()
    A

    连续

    B

    偏导数存在

    C

    偏导数连续

    D

    切平面存在


    正确答案: C
    解析: 由可微一定连续,可微一定存在偏导数知(A)、(B)正确,由偏导数存在知切平面存在,(D)正确。但可微不一定偏导数连续,(C)不正确

  • 第12题:

    单选题
    下列结论正确的是().
    A

    x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件

    B

    z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件

    C

    z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件

    D

    z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件


    正确答案: B
    解析: 暂无解析

  • 第13题:

    函数f(x,y)在点P0(x0,y0)处的一阶偏导数存在是该函数在此点可微分的(  )。

    A. 必要条件
    B. 充分条件
    C. 充分必要条件
    D. 既非充分条件也非必要条件

    答案:A
    解析:
    函数f(x,y)在P0(x0,y0)可微,则f(x,y)在P0(x0,y0)的偏导数一定存在。反之,偏导数存在不一定能推出函数在该点可微。举例如下:
    函数



    在点(0,0)处有fx(0,0)=0,fy(0,0)=0,但函数f(x,y)在(0,0)处不可微。因此,函数f(x,y)在点P0(x0,y0)处的一阶偏导数存在是该函数在此点可微分的必要条件。

  • 第14题:

    设函数f(x)具有2阶连续导数,若曲线y=f(x)过点(0,0)且与曲线y=^x在点(1,2)处相切,则=________.


    答案:1、2(ln2-1)
    解析:

  • 第15题:

    在点x=0处的导数等于零的函数是(  )

    A.y=sinx
    B.y=x-1
    C.y=ex-x
    D.y=x2-x

    答案:C
    解析:

  • 第16题:

    若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微


    正确答案:错误

  • 第17题:

    对于二元函数z=f(x,y),在点(x0,y0)处连续是它在该点处偏导数存在的什么条件()?

    • A、必要条件而非充分条件
    • B、充分条件而非必要条件
    • C、充分必要条件
    • D、既非充分又非必要条件

    正确答案:D

  • 第18题:

    下列结论不正确的是()。

    • A、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处连续
    • B、z=f(x,y)在点(x0,y0)处可微,则f(x,y)在点(x0,y0)处可导
    • C、z=f(x,y)在点(x0,y0)处可导,则f(x,y)在点(x0,y0)处可微
    • D、z=f(x,y)在点(x0,y0)处偏导数连续,则f(x,y)在点(x0,y0)处连续

    正确答案:C

  • 第19题:

    下列结论正确的是().

    • A、x=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
    • B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
    • C、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
    • D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

    正确答案:D

  • 第20题:

    下列结论正确的是().

    • A、z=f(x,y)在点(x,y)的偏导数存在是f(x,y)在该点连续的充分条件
    • B、z=f(x,y)在点(x,y)连续是f(x,y)的偏导数存在的必要条件
    • C、z=(x,y)在点(x,y)的偏导数存在是f(x,y)在该点可微分的充分条件
    • D、z=(x,y)在点(x,y)连续是f(x,y)在该点可微分的必要条件

    正确答案:D

  • 第21题:

    判断题
    若z=f(x,y)在(x0,y0)处的两个一阶偏导数存在,则函数z=f(x,y)在(x0,y0)处可微
    A

    B


    正确答案:
    解析: 暂无解析

  • 第22题:

    单选题
    二元函数z=f(x,y)在点(x0,y0)处存在一阶连续偏导数是它在此点处可微的(  )。
    A

    充分条件

    B

    必要条件

    C

    充要条件

    D

    以上都不是


    正确答案: C
    解析:
    一阶偏导数在(x0,y0)点连续,则函数在(x0,y0)处可微;而函数在(x0,y0)处可微,其一阶偏导数不一定连续。

  • 第23题:

    单选题
    可微函数f(x,y)在点(x0,y0)取得极小值,下列结论正确的是(  )。
    A

    f(x0,y)在y=y0处的导数等于零

    B

    f(x0,y)在y=y0处的导数大于零

    C

    f(x0,y)在y=y0处的导数小于零

    D

    f(x0,y)在y=y0处的导数不存在


    正确答案: C
    解析:
    由题意可知,fx′(x0,y0)=fy′(x0,y0)=0。则当x=x0时,f(x0,y)是一元可导函数,且它在y=y0处取得极小值。故f(x0,y)在y=y0处的导数为0。

  • 第24题:

    单选题
    若函数f(x,y)在闭区域D上连续,下列关于极值点的陈述中正确的是()。
    A

    f(x,y)的极值点一定是f(x,y)的驻点

    B

    如果P0是f(x,y)的极值点,则P0点处B2-AC<0

    C

    如果P0是可微函数f(x,y)的极值点,则P0点处df=0

    D

    f(x,y)的最大值点一定是f(x,y)的极大值点


    正确答案: C
    解析: 暂无解析