itgle.com
参考答案和解析
正确答案:

 

更多“设函数f(x)=x,则f’(1)=____________。 ”相关问题
  • 第1题:

    设f(x),g(x),h(x)均为奇函数,则()中所给定的函数是偶函数。

    A、f(x)g(x)h(x)

    B、[f(x)+g(x)]h(x)

    C、f(x)+g(x)

    D、f(x)+g(x)+h(x)


    参考答案:B

  • 第2题:

    设函数f(x)=1/x+1,则f(f(x))=()。


    答案:A

    解析:由函数f(x)=1/x+1,

    令f(x)=t

    则f(f(x))=f(t)=1/t+1=1/(1/x+1)+1=x/(1+x)+1,故选A。

  • 第3题:

    设f(x)是定义在[-a,a]上的任意函数,则下列答案中哪个函数不是偶函数?

    A.f(x)+f(-x)
    B.f(x)*f(-x)
    C.[f(x)]2
    D.f(x2)

    答案:C
    解析:
    提示:利用函数的奇偶性定义来判定。选项A、B、D均满足定义F(-x)=F(x),所以为偶函数,而C不满足,设F(x)= [f(x)]2,F(-x)= [f(-x)]2,因为f(x)是定义在 [-a,a]上的任意函数,f(x)可以是奇函数,也可以是偶函数,也可以是非奇非偶函数,从而推不出F(-x)=F(x)或 F(-x) = -F(x)。

  • 第4题:

    设随机变量X的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数a有( )。

    A.
    B.
    C.F(-a)=F(a)
    D.F(-a)=2F(a)-1

    答案:B
    解析:

  • 第5题:

    设函数f(x)可导,且f(x)f'(x)>0,则



    A.Af(1)>f(-1)
    B.f(1)C.|f(1)|>|f(-1)|
    D.|f(1)|<|f|(-1)|

    答案:C
    解析:

  • 第6题:

    设f(x)是周期为4的可导奇函数,且f'(x)=2(x-1),x∈[0,2],则f(7)=________.


    答案:1、1.
    解析:
    由f'(x)=2(x-1),x∈[0,2]知,f(x)=(x-1)^2+C.又f(x)为奇函数,则f(0)=0,C=-1.f(x)=(x-1)^2-1.由于f(x)以4为周期,则f(7)=f[8+(-1)]=f(-1)=-f(1)=1.

  • 第7题:

    设f(x)的一个原函数为1nx,则f(x)等于( ).《》( )


    答案:A
    解析:

  • 第8题:

    设x是f(x)的一个原函数,则f(x)=



    答案:C
    解析:
    x为f(x)的一个原函数,由原函数定义可知f(x)=x'=1,故选C.

  • 第9题:

    设f(x)是R上的函数,则下列叙述正确的是()。

    • A、f(x)f(-x)是奇函数
    • B、f(x)|f(x)|是奇函数
    • C、f(x)-f(-x)是偶函数
    • D、f(x)+f(-x)是偶函数

    正确答案:D

  • 第10题:

    填空题
    设函数f(x)在x=2的某邻域内可导,且f′(x)=ef(x),f(2)=1,则f‴(2)=____。

    正确答案: 2e3
    解析:
    因f′(x)=efx方程两边对x求导,得f″(x)=efx·f′(x)=efx·efx=e2fx,两边再对x求导,得f‴(x)=e2fx·2f′(x)=2e2fx·efx=2e3fx。又f(2)=1,则f‴(2)=2e3f2=2e3

  • 第11题:

    填空题
    设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()

    正确答案: 1/2
    解析: 暂无解析

  • 第12题:

    单选题
    设f(x)是R上的函数,则下列叙述正确的是()。
    A

    f(x)f(-x)是奇函数

    B

    f(x)|f(x)|是奇函数

    C

    f(x)-f(-x)是偶函数

    D

    f(x)+f(-x)是偶函数


    正确答案: C
    解析: 可以用特殊值法排除。可假设f(x)=x,此时f(x)f(-x)=-x2是偶函数,可以排除A;f(x)-f(-x)=2x是奇函数可以排除C;假设f(x)=x2可以排除B选项。

  • 第13题:

    设函数f(x)为奇函数,g(x)为偶函数,则复合函数()是奇函数。

    A.f(f(x))

    B.g(f(x))

    C.f(g(x))

    D.g(g(x))


    正确答案:A

  • 第14题:

    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。

    A. f[g(x)]
    B. f[f(x)]
    C. g[f(x)]
    D. g[g(x)]

    答案:D
    解析:
    D项,令T(x)=g[g(x)]。因为T(-x)=g[g(-x)]=g[-g(x)]=-g[g(x)],所以T(-x)=-T(x),所以g[g(x)]为奇函数。

  • 第15题:

    设随机变量X的分布函数为F(x),则下列函数中可作为某随机变量的分布函数的是( ).

    A.F(x^2)
    B.F(-z)
    C.1-F(x)
    D.F(2x-1)

    答案:D
    解析:
    函数Φ(x)可作为某一随机变量的分布函数的充分必要条件是:(1)0≤Φ(x)≤1;(2)Φ(x)单调不减;(3)Φ(x)右连续;(4)Φ(-∞)-0,Φ(+∞)=1.显然只有F(2x-1)满足条件,选(D).

  • 第16题:

    设f(x)是[-2,2]上的偶函数,且f’(-1)=3,则f′(1)=.


    答案:
    解析:
    【答案】-3【考情点拨】本题考查了函数的一阶导数的知识点.

  • 第17题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为



    A.AF^2(x)
    B.F(x)F(y)
    C.1-[1-F(x)]^2
    D.[1-F(x)][1-F(y)]

    答案:A
    解析:
    随机变量Z=max(X,Y)的分布函数Fz(x)应为Fz(x)=P{Z≤x},由此定义不难推出Fz(x).【求解】故答案应选(A).
    【评注】不难验证(B)F(x)F(y)恰是二维随机变量(X,Y)的分布函数.(C)1-[1-F(x)]^2则是随机变量min(X,Y)的分布函数.(D)[1-F(x)][1-F(y)]本身不是分布函数,因它不满足分布函数的充要条件.

  • 第18题:

    ,则:

    A.f(x)为偶函数,值域为(-1,1)
    B.f(x)为奇函数,值域为(-∞,0)
    C.f(x)为奇函数,值域为(-1,1)
    D.f(x)为奇函数,值域为(0,+∞)

    答案:C
    解析:

  • 第19题:

    设随机变量x的密度函数为f(x),且f(-x)=f(x),F(x)是X的分布函数,则对任意实数 a,有( )。


    答案:B
    解析:

  • 第20题:

    设随机变量X,Y独立同分布,且X的分布函数为F(x),则Z=max{X,Y}的分布函数为()

    • A、F2(x)
    • B、F(x)F(y)
    • C、1-[1-F(x)]2
    • D、[1-F(x)][1-F(y)]

    正确答案:A

  • 第21题:

    设单调可微函数f(x)的反函数为g(x),f(1)=3,f′(1)=2,f″(3)=6则g′(3)=()


    正确答案:1/2

  • 第22题:

    填空题
    设f(x)是可导函数,且f′(x)=sin2[sin(x+1)],f(0)=4,f(x)的反函数是x=φ(y),则φ′(4)=____。

    正确答案: 1/sin2(sin1)
    解析:
    φ′(4)=1/f′(0)=1/sin2(sin1)。

  • 第23题:

    问答题
    设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

    正确答案:
    f(x)g(x)=1,则f′(x)g(x)+f(x)g′(x)=0①
    即f′(x)/f(x)=-g′(x)/g(x)②
    对①两边求导得f″(x)g(x)+2f′(x)g′(x)+f(x)g″(x)=0,即f″(x)+2f′(x)g′(x)/g(x)+f(x)g″(x)/g(x)=0,即f″(x)/f′(x)+2f′(x)g′(x)/f′(x)g(x)+f(x)g″(x)/f′(x)g(x)=0。
    由①得f″(x)/f′(x)+2g′(x)/g(x)-f(x)g″(x)/f(x)g′(x)=0,则f″(x)/f′(x)+2g′(x)/g(x)=g″(x)/g′(x)。
    又由②得f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
    解析: 暂无解析