itgle.com

设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )A.矩阵C的行向量组与矩阵A的行向量组等价 B.矩阵C的列向量组与矩阵A的列向量组等价 C.矩阵C的行向量组与矩阵B的行向量组等价 D.矩阵C的行向量组与矩阵B的列向量组等价

题目
设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( )


A.矩阵C的行向量组与矩阵A的行向量组等价
B.矩阵C的列向量组与矩阵A的列向量组等价
C.矩阵C的行向量组与矩阵B的行向量组等价
D.矩阵C的行向量组与矩阵B的列向量组等价


相似考题
参考答案和解析
答案:B
解析:
更多“设矩阵A,B,C均为n阶矩阵,若AB=C,且B可逆,则( ) ”相关问题
  • 第1题:

    设A,B为n阶矩阵,则下列结论正确的是().

    A.若A,B可逆,则A+B可逆
    B.若A,B可逆,则AB可逆
    C.若A+B可逆,则A-B可逆
    D.若A+B可逆,则A,B都可逆

    答案:B
    解析:
    若A,B可逆,则|A|≠0,|B|≠0,又|AB|=|A||B|,所以|AB|≠0,于是AB可逆,选(B).

  • 第2题:

    设A,B为n阶对称矩阵,下列结论不正确的是().

    A.AB为对称矩阵
    B.设A,B可逆,则A^-1+B^-1为对称矩阵
    C.A+B为对称矩阵
    D.kA为对称矩阵

    答案:A
    解析:

  • 第3题:

    设a为N阶可逆矩阵,则( ).

    A.若AB=CB,则a=C:
    B.
    C.A总可以经过初等变换化为单位矩阵E:
    D.以上都不对.


    答案:C
    解析:

  • 第4题:

    设N阶矩阵A与对角矩阵合同,则A是().

    A.可逆矩阵
    B.实对称矩阵
    C.正定矩阵
    D.正交矩阵

    答案:B
    解析:

  • 第5题:

    设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B-C=



    A.E
    B.-E
    C.A
    D.-A

    答案:A
    解析:

  • 第6题:

    设A、B都是n阶可逆矩阵,且(AB)2=I,则(BA)2的值为( )。



    答案:A
    解析:
    已知(AB)2=I,即ABAB=I,说明矩阵A可逆,且A-1=BAB,用A右乘上式两端即可得解

  • 第7题:

    设A,B都是n阶矩阵,AB+E可逆.证明BA+E也可逆,并且.


    答案:
    解析:

  • 第8题:

    证明下列命题:(1) 若A,B是同阶可逆矩阵,则(AB)*=B*A*.(2) 若A可逆,则A*可逆且.(3) 若AA′=E,则.


    答案:
    解析:

  • 第9题:

    设A为n阶非零矩阵,E为n阶单位矩阵,若A^3=O,则



    A.AE-A不可逆,E+A不可逆
    B.E-A不可逆,E+A可逆
    C.E-A可逆,E+A可逆
    D.E-A可逆,E+A不可逆

    答案:C
    解析:
    判断矩阵A可逆通常用定义,或者用充要条件行列式|A|≠0(当然|A|≠0又有很多等价的说法).因为(E-A)(E+A+A^2)=E-A^3=E,(E+A)(E-A+A^2)=E+A^3=E,所以,由定义知E-A,E+A均可逆.故选(C).

    【评注】本题用特征值也是简捷的,由A^3=OA的特征值λ=0E-A(或E+A)特征值均不为0|E-A|≠0(或|E+A|≠0)E-A(或E+A)可逆

  • 第10题:

    均为n阶可逆矩阵,则=( )。
    A.
    B.A+B
    C.
    D.


    答案:C
    解析:

  • 第11题:

    设A为n阶可逆矩阵,则(-A)的伴随矩阵(-A)*等于()。

    • A、-A*
    • B、A*
    • C、(-1)nA*
    • D、(-1)n-1A*

    正确答案:D

  • 第12题:

    设A,B为同阶可逆矩阵,则( )。

    A.AB=BA
    B.
    C.
    D.存在可逆矩阵P和Q,使PAQ=B

    答案:D
    解析:

  • 第13题:

    设A,B为n阶可逆矩阵,则().



    答案:D
    解析:
    因为A,B都是可逆矩阵,所以A,B等价,即存在可逆矩阵P,Q,使得PAQ=B,选(D).

  • 第14题:

    设A为m×n阶矩阵,B为n×m阶矩阵,且m>n,令r(AB)=r,则().

    A.r>m
    B.r=m
    C.rD.r≥m

    答案:C
    解析:
    显然AB为m阶矩阵,r(A)≤n,r(B)≤n,而r(AB)≤min{r(A),r(B)}≤n小于m,所以选(C).

  • 第15题:

    设A为m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r1,矩阵B=AC的秩为r,则



    答案:C
    解析:

  • 第16题:

    设a为N阶可逆矩阵,则( ).

    A.若AB=CB,则a=C
    B.
    C.A总可以经过初等变换化为单位矩阵E
    D.以上都不对


    答案:C
    解析:

  • 第17题:

    设A1,A2分别为m阶,n阶可逆矩阵,分块矩阵.证明:A可逆,且


    答案:
    解析:

  • 第18题:

    设n阶矩阵A可逆,且detA=a,求,.


    答案:
    解析:

  • 第19题:

    设A,B,C均为n阶矩阵,若AB=C,且B可逆,则



    A.A矩阵C的行向量组与矩阵A的行向量组等价
    B.矩阵C的列向量组与矩阵A的列向量组等价
    C.矩阵C的行向量组与矩阵B的行向量组等价
    D.矩阵C的列向量组与矩阵B的列向量组等价

    答案:B
    解析:
    对矩阵A,C分别按列分块,记A=(α1,α2,…,αn),C=(γ,γ,…,γ).  由AB=C有

      可见

    即C的列向量组可以由A的列向量组线性表出.
      因为B可逆,有CB^-1=A.类似地,A的列向量组也可由C的列向量组线性表出,因此选(B).

  • 第20题:

    设a为N阶可逆矩阵,则( ).《》( )


    答案:C
    解析:

  • 第21题:

    设A是3阶矩阵,P = (α1,α2,α3)是3阶可逆矩阵,且,若矩阵Q=(α2,α1,α3),则Q-1AQ=( )。


    答案:B
    解析:
    提示:由条件知,λ1=1,λ2=2,λ3=0是矩阵A的特征值,而α1,α2,α3是对应的特征向量,故有