itgle.com

设f(x)=(x-t)dt,则当x→0时,g(x)是f(x)的().A.高阶无穷小 B.低阶无穷小 C.同阶但非等价的无穷小 D.等价无穷小

题目
设f(x)=(x-t)dt,则当x→0时,g(x)是f(x)的().


A.高阶无穷小
B.低阶无穷小
C.同阶但非等价的无穷小
D.等价无穷小


相似考题
更多“设f(x)=(x-t)dt,则当x→0时,g(x)是f(x)的(). ”相关问题
  • 第1题:

    设函数f(x)为奇函数,g(x)为偶函数,则复合函数()是奇函数。

    A.f(f(x))

    B.g(f(x))

    C.f(g(x))

    D.g(g(x))


    正确答案:A

  • 第2题:

    设f(x),g(x)ϵP[x J. 若f(x)lg(x),g(x)lf(x),则 f(x)与g(x)的关系是( ).


    参考答案:A

  • 第3题:

    设f(x)连续且F(x)=f(x)dt,则F(x)为().



    A.2a
    B.a2f(a)
    C.0
    D.不存在

    答案:B
    解析:

  • 第4题:

    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。

    A. [f(x)/g(x)]>[f(a)/g(b)]
    B. [f(x)/g(x)]>[f(b)/g(b)]
    C. f(x)g(x)>f(a)g(a)
    D. f(x)g(x)>f(b)g(b)

    答案:C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

  • 第5题:

    设f(x)=dt,g(x)=+,则当x→0时,f(x)是g(x)的().


    A.低阶无穷小
    B.高阶无穷小
    C.等价无穷小
    D.同阶但非等价的无穷小


    答案:B
    解析:

  • 第6题:

    f(x)与g(x)的图像如图所示,设u(x)=f[g(x)],则


    答案:
    解析:

  • 第7题:

    设f(x)和g(x)在(-∞,+∞)内可导,且f(x)<g(x),则必有( )《》( )


    答案:C
    解析:

  • 第8题:

    设F(x),G(x)是f(x)的两个原函数,则下面的结论不正确的是()。

    • A、F(x)+C也是f(x)的原函数,C为任意常数
    • B、F(x)=G(x)+C,C为任意常数
    • C、F(x)=G(x)+C,C为某个常数
    • D、F’(x)=G’(x)

    正确答案:B

  • 第9题:

    设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()

    • A、f(x)=g(f(x))
    • B、g(x)=f(f(x))
    • C、f(x)=g(x)
    • D、g(x)=f(g(x))

    正确答案:C

  • 第10题:

    判断题
    设f(x)=3x+2,g(x)=2x-3,则f(g(x))=6x-7。
    A

    B


    正确答案:
    解析: 暂无解析

  • 第11题:

    单选题
    设K是个数域,K[x]中的多项式f(x),g(x),若有f=g,则可以得到什么?()
    A

    f(x)=g(f(x))

    B

    g(x)=f(f(x))

    C

    f(x)=g(x)

    D

    g(x)=f(g(x))


    正确答案: C
    解析: 暂无解析

  • 第12题:

    单选题
    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。[2018年真题]
    A

    f[g(x)]

    B

    f[f(x)]

    C

    g[f(x)]

    D

    g[g(x)]


    正确答案: C
    解析:
    D项,令T(x)=g[g(x)]。因为T(-x)=g[g(-x)]=g[-g(x)]=-g[g(x)],所以T(-x)=-T(x),所以g[g(x)]为奇函数。

  • 第13题:

    设f(0)=g(0),且当x30时,f'(x)>g'(x),则当x>0时有()。

    A.f(x)

    B.f(x)>g(x)

    C.f(x)=g(x)

    D.以上都不对


    正确答案:B

  • 第14题:

    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是(  )。

    A. f[g(x)]
    B. f[f(x)]
    C. g[f(x)]
    D. g[g(x)]

    答案:D
    解析:
    D项,令T(x)=g[g(x)]。因为T(-x)=g[g(-x)]=g[-g(x)]=-g[g(x)],所以T(-x)=-T(x),所以g[g(x)]为奇函数。

  • 第15题:

    设f(x)=du,g(x)=(1-cost)dt,则当x→0时,f(x)是g(x)的()

    A.低阶无穷小
    B.高阶无穷小
    C.等价无穷小
    D.同阶但非等价的无穷小

    答案:A
    解析:

  • 第16题:

    设f(x)=dt,g(x)=x3+x4,当x→0时,f(x)是g(x)的().


    A.等价无穷小
    B.同阶但非等价无穷小
    C.高阶无穷小
    D.低阶无穷小


    答案:B
    解析:
    因为,所以正确答案为(B).

  • 第17题:

    设函数f(x)具有二阶导数,g(x)=f(0)(1-x)+f(1)x,则在区间[0,1]上



    A.A当f'(x)≥0时,f(x)≥g(x)
    B.当f'(x)≥0时,f(x)≤g(x)
    C.当f"(x)≥0时,f(x)≥g(x)
    D.当f"(x)≥0时,f(x)≤g(x)

    答案:D
    解析:
    由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1-x)+f(1)x过点(0,f(0))和(1,f(1)),当f"(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1-x)+f(1)x的下方,即f(x)≤g(x)故应选(D).
    (方法二)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,
    则 F'(x)=f'(x)+f(0)-f(1),F"(x)=f"(x).当f"(x)≥0时,F"(x)≥0,则曲线y=F(x)在区间[0,1]上是凹的.又F(0)=F(1)=0,从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).
    (方法三)令F(x)=f(x)-g(x)=f(x)-f(0)(1-x)-f(1)x,

    则 F(x)=f(x)[(1-x)+x]-f(0)(1-x)-f(1)x

    =(1-x)[f(x)-f(0)]-x[f(1)-f(x)]
       =x(1-x)f'(ξ)-x(1-x)f'(η) (ξ∈(0,x),η∈(x,1))
       =x(1-x)[f'(ξ)-f'(η)]
      当f"(x)≥0时,f'(x)单调增,f'(ξ)≤f'(η),从而,当x∈[0,1]时F(x)≤0,即f(x)≤g(x),故应选(D).

  • 第18题:

    设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有( )《》( )

    A.f(x)g(b)>f(b)g(x)
    B.f(x)g(a)>f(a)g(x)
    C.f(x)g(x)>f(b)g(b)
    D.f(x)g(x)>f(a)g(a)

    答案:A
    解析:

  • 第19题:

    设f(x),g(x)∈F[x],若f(x)=0则有什么成立?()

    • A、deg(f(x)g(x))
    • B、deg(f(x)g(x))>max{degf(x),degg(x)}
    • C、deg(f(x)+g(x))>max{degf(x),degg(x)}
    • D、deg(f(x)+g(x))=max{degf(x),degg(x)}

    正确答案:D

  • 第20题:

    设f(x)=3x+2,g(x)=2x-3,则f(g(x))=6x-7。


    正确答案:正确

  • 第21题:

    单选题
    设f(x)为偶函数,g(x)为奇函数,则下列函数中为奇函数的是()。
    A

    f[g(x)]

    B

    f[f(x)]

    C

    g[f(x)]

    D

    g[g(x)]


    正确答案: D
    解析:

  • 第22题:

    单选题
    设函数f(x),g(x)在[a,b]上均可导(a<b),且恒正,若f′(x)g(x)+f(x)g′(x)>0,则当x∈(a,b)时,下列不等式中成立的是(  )。[2018年真题]
    A

    f(x)/g(x)>f(a)/g(b)

    B

    f(x)/g(x)>f(b)/g(b)

    C

    f(x)g(x)>f(a)g(a)

    D

    f(x)g(x)>f(b)g(b)


    正确答案: C
    解析:
    因为[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x)>0,所以函数f(x)g(x)在[a,b]上单调递增。所以,当x∈(a,b)时,f(a)g(a)<f(x)g(x)<f(b)g(b)。

  • 第23题:

    问答题
    设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。

    正确答案:
    f(x)g(x)=1,则f′(x)g(x)+f(x)g′(x)=0①
    即f′(x)/f(x)=-g′(x)/g(x)②
    对①两边求导得f″(x)g(x)+2f′(x)g′(x)+f(x)g″(x)=0,即f″(x)+2f′(x)g′(x)/g(x)+f(x)g″(x)/g(x)=0,即f″(x)/f′(x)+2f′(x)g′(x)/f′(x)g(x)+f(x)g″(x)/f′(x)g(x)=0。
    由①得f″(x)/f′(x)+2g′(x)/g(x)-f(x)g″(x)/f(x)g′(x)=0,则f″(x)/f′(x)+2g′(x)/g(x)=g″(x)/g′(x)。
    又由②得f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
    解析: 暂无解析