itgle.com
更多“若A是实对称矩阵,则A为正定矩阵的充要条件是A的特征值全为正”相关问题
  • 第1题:

    已知二阶实对称矩阵A的特征值是1,A的对应于特征值1的特征向量为(1,-1)T,若|A|=-1,则A的另一个特征值及其对应的特征向量是(  )。


    答案:B
    解析:
    根据矩阵行列式与特征值的关系:|A|=λ1λ2,故另一个特征值为-1,其对应的特征向量应与已知特征向量正交,即两向量点乘等于零,因此(1,1)T满足要求。

  • 第2题:

    若A是实对称矩阵,则若|A|>O,则A为正定的


    答案:错
    解析:

  • 第3题:

    若A是实对称矩阵,则A的特征值全为实数


    答案:对
    解析:

  • 第4题:

    设n阶矩阵A与对角矩阵相似,则().

    A.A的n个特征值都是单值
    B.A是可逆矩阵
    C.A存在n个线性无关的特征向量
    D.A一定为n阶实对称矩阵

    答案:C
    解析:
    矩阵A与对角阵相似的充分必要条件是其有n个线性无关的特征向量,A有n个单特征值只是其可对角化的充分而非必要条件,同样A是实对称阵也是其可对角化的充分而非必要条件,A可逆既非其可对角化的充分条件,也非其可对角化的必要条件,选(C).

  • 第5题:

    设N阶矩阵A与对角矩阵合同,则A是().

    A.可逆矩阵
    B.实对称矩阵
    C.正定矩阵
    D.正交矩阵

    答案:B
    解析:

  • 第6题:

    设A为m阶实对称矩阵且正定,B为m×n实矩阵,B^T为B的转置矩阵,试证:B^TAB为正定矩阵的充分必要条件是B的秩r(B)=n,


    答案:
    解析:

  • 第7题:

    设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.


    答案:
    解析:

  • 第8题:

    设A为三阶实对称矩阵,A的秩为2,且

      (Ⅰ)求A的所有特征值与特征向量;
      (Ⅱ)求矩阵A.


    答案:
    解析:

  • 第9题:

    在变尺度方法中,为了保证搜索方向是函数下降的方向,其变尺度矩阵A(k)必须是()

    • A、正定矩阵
    • B、对称正定矩阵
    • C、半正定矩阵
    • D、共轭矩阵

    正确答案:B

  • 第10题:

    n阶实对称矩阵A为正定矩阵,则下列不成立的是()。

    • A、所有k级子式为正(k=1,2,…,n)
    • B、A的所有特征值非负
    • C、秩(A)=n

    正确答案:A

  • 第11题:

    多选题
    对于所有非零向量X,若XTMX>0,则二次矩阵M是()。
    A

    三角矩阵

    B

    负定矩阵

    C

    正定矩阵

    D

    非对称矩阵

    E

    对称矩阵


    正确答案: A,E
    解析: 暂无解析

  • 第12题:

    单选题
    若矩阵A的各阶顺序主子式均大于零,则该矩阵为()矩阵。
    A

    正定

    B

    正定二次型

    C

    负定

    D

    负定二次型


    正确答案: A
    解析: 暂无解析

  • 第13题:

    N阶实对称矩阵A正定的充分必要条件是().



    A.A无负特征值
    B.A是满秩矩阵
    C.A的每个特征值都是单值
    D.A^-1是正定矩阵

    答案:D
    解析:
    A正定的充分必要条件是A的特征值都是正数,(A)不对;若A为正定矩阵,则A一定是满秩矩阵,但A是满秩矩阵只能保证A的特征值都是非零常数,不能保证都是正数,(B)不对;(C)既不是充分条件又不是必要条件;显然(D)既是充分条件又是必要条件,选(D).

  • 第14题:

    实二次型矩阵A正定的充分必要条件是( )。

    A.二次型的标准形的n个系数全为正
    B.|A|>0
    C.矩阵A的特征值为2
    D.r(A)=n

    答案:A
    解析:

  • 第15题:


    A.A是对称矩阵
    B.A是实矩阵
    C.A有正特征值
    D.A不能对角化

    答案:D
    解析:

  • 第16题:

    n阶实对称矩阵A为正定矩阵,则下列不成立的是( )。

    A.所有k级子式为正(k=1,2,…,n)
    B.A的所有特征值非负
    C.
    D.秩(A)=n

    答案:A
    解析:

  • 第17题:

    设A是实对称矩阵,C是实可逆矩阵,.则( ).

    A.A与B相似
    B.A与B不等价
    C.A与B有相同的特征值
    D.A与B合同

    答案:D
    解析:

  • 第18题:

    设Α是正定矩阵,B是实对称矩阵,证明ΑB可对角化


    答案:
    解析:

  • 第19题:

    设A是3阶实对称矩阵,满足,并且r(A)=2. (1) 求A的特征值. (2)当实数k满足什么条件时A+kE正定?


    答案:
    解析:

  • 第20题:

    设A为3阶实对称矩阵,A的秩为2,且. (Ⅰ)求A的特征值与特征向量; (Ⅱ)求矩阵A


    答案:
    解析:

  • 第21题:

    若矩阵A的各阶顺序主子式均大于零,则该矩阵为()矩阵。

    • A、正定
    • B、正定二次型
    • C、负定
    • D、负定二次型

    正确答案:A

  • 第22题:

    对于所有非零向量X,若XTMX>0,则二次矩阵M是()。

    • A、三角矩阵
    • B、负定矩阵
    • C、正定矩阵
    • D、非对称矩阵
    • E、对称矩阵

    正确答案:C,E

  • 第23题:

    单选题
    在变尺度方法中,为了保证搜索方向是函数下降的方向,其变尺度矩阵A(k)必须是()
    A

    正定矩阵

    B

    对称正定矩阵

    C

    半正定矩阵

    D

    共轭矩阵


    正确答案: B
    解析: 暂无解析