itgle.com
更多“设X,Y相互独立,且X~N(1,2),Y~N(0,1),求2=2X-Y+3的密度函数,”相关问题
  • 第1题:

    设随机变量X,Y相互独立,且X~N,Y~N,则与Z=Y-X同分布的随机变量是().

    A.X-Y
    B.X+Y
    C.X-2Y
    D.Y-2X

    答案:B
    解析:
    Z=Y-X~N(1,1),因为X-Y~N(-1,1),X+Y~N(1,1).X-2Y~N,Y-2X~N,所以选(B).

  • 第2题:

    设二维随机变量(X,Y)的联合密度函数为f(x,y)=
      (1)求随机变量X,Y的边缘密度函数;
      (2)判断随机变量X,Y是否相互独立;
      (3)求随机变量Z=X+2Y的分布函数和密度函数.


    答案:
    解析:

  • 第3题:

    设随机变量X,Y相互独立,且X~N,Y~N,Z=|X-Y|,求
      E(Z),D(Z).


    答案:
    解析:

  • 第4题:

    设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求Z=X+Y的密度函数


    答案:
    解析:

  • 第5题:

    设随机变量X~U(0,1),Y~E(1),且X,Y相互独立,求随机变量Z=X+Y的概率密度.


    答案:
    解析:

  • 第6题:

    设随机变量X~U(0,1),在X=x(0  (1)求X,y的联合密度函数;
      (2)求y的边缘密度函数.


    答案:
    解析:

  • 第7题:

    设随机变量X~N(1,2),Y~N(-1,2),Z~N(0,9)且随机变量X,Y,Z相互独立,已知a(X+Y)2+bZ2~χ2(n)(ab≠O),则a=_______,b=_______,Z=_______.


    答案:
    解析:
    由X~N(1,2),Y~N(-1,2),Z~N(0,9),得X+Y~N(0,4),且,故.

  • 第8题:

    已知X-N(-3,1),Y-N(2,1),且X,Y相互独立,记Z=X-2Y+7则Z-().

    • A、N(0,5)
    • B、N(0,12)
    • C、N(0,54)
    • D、N(-1,2)

    正确答案:A

  • 第9题:

    若随机变量X~N(-2,4),Y~N(3,9),且X与Y相互独立。设Z=2X-Y+5,则Z~()。


    正确答案:N(-2,25)

  • 第10题:

    设随机变量X与Y相互独立,且X~N(1,2),Y~N(0,1)。令Z=-Y+2X+3,则D(Z)=()。


    正确答案:9

  • 第11题:

    设随机变量X~N(-3,1),Y~N(2,1),且X,Y相互独立,记Z=X-2Y+7,则Z~()。


    正确答案:N(0,5)

  • 第12题:

    问答题
    设随机变景X与Y相互独立,且X服从[0,1]上的均匀分布,y服从λ=1的指数分布,  求:(1)X与Y的联合分布函数.  (2)X与y的联合概率密度函数.  (3)P{X≥Y}.

    正确答案:
    解析:

  • 第13题:

    设随机变量X,Y相互独立,且X~N(0,1),Y~N(1,1),则().


    答案:B
    解析:
    X,Y独立,X~N(0,1),Y~N(1,1),X+Y~N(1,2)P(X+Y≤1)=,所以选(B).

  • 第14题:

    设二维随机变量(X,Y)服从二维正态分布,且X~N(1,3^2),Y~N(0,4^2),且X,Y的相
      关系数为-,又设Z=
    (1)求E(Z),D(Z);(2)求;(3)X,Z是否相互独立?为什么?


    答案:
    解析:
    【解】(1)

    (2)
    (3)因为(X,Y)服从二维正态分布,所以Z服从正态分布,同时X也服从正态分布,又X,
    Z不相关,所以X,Z相互独立.

  • 第15题:

    设X~N(0,1),y=X^2,求y的概率密度函数.


    答案:
    解析:

  • 第16题:

    设随机变量X~N(0,1),且y=9X^2,则y的密度函数为_______.


    答案:
    解析:

  • 第17题:

    设随机变量X~N(μ,σ^2),Y~U[-π,π],X,Y相互独立,令Z=X+Y,求fz(z).


    答案:
    解析:

  • 第18题:

    设X,Y相互独立,且X~B,Y~N(0,1),令U=max{X,Y},求P{1

    答案:
    解析:
    【解】P(U≤u)=P(max{X,Y}≤u)=P(X≤u,Y≤u)=P(X≤u)P(Y≤u),
    P(U≤1.96)=P(X≤1.96)P(Y≤1.96)=[P(X=0)+P(X=1)]P(Y≤1.96)

    P(U≤1)=P(X≤1)P(Y≤1)=×Ф(1)=0.4205,
    则P(1小于U≤1.96)=P(U≤1.96)-P(U≤1)=0.067.

  • 第19题:

    设X1,2X,…,Xn(n>2)相互独立且都服从N(0,1),Yi=Xi-X(i=1,2,…,n).求:
      (1)D(Yi)(i=1,2,…,n);(2)Cov(Y1,Yn);(3)P(Yn+Yn≤0).


    答案:
    解析:

  • 第20题:

    设X,Y是相互独立的随机变量,X~N(2,σ2),Y~N(-3,σ2),且P{|2X+Y-1|≤8.7654}=0.95,则σ=()。


    正确答案:2

  • 第21题:

    若随机变量X~N(1,4),Y~N(2,9),且X与Y相互独立。设Z=X-Y+3,则Z~()。


    正确答案:N(2,13)

  • 第22题:

    设随机变量X和Y相互独立,且X~N(0,1),Y~N(1,1),则()

    • A、P{X+Y≤0}=0.5
    • B、P{X+Y≤1}=0.5
    • C、P{X-Y≤0}=0.5
    • D、P{X-Y≤1}=0.5

    正确答案:B

  • 第23题:

    设X,Y相互独立,且都服从标准正态分布N(0,1),令Z=X2+Y2则Z服从的分布是().

    • A、N(0,2)分布
    • B、单位圆上的均匀分布
    • C、参数为1的瑞利分布
    • D、N(0,1)分布

    正确答案:C