itgle.com

假定某厂商的需求函数为Q =100-P,平均成本函数为Ac=120/Q+2。 (1)求该厂商实现利润最大化时的产量、价格及利润量。 (2)如果政府对每单位产品征税8元,那么,该厂商实现利润最大化时的产量、价格及利润量又是多少?与(1)中的结果进行比较。

题目
假定某厂商的需求函数为Q =100-P,平均成本函数为Ac=120/Q+2。 (1)求该厂商实现利润最大化时的产量、价格及利润量。 (2)如果政府对每单位产品征税8元,那么,该厂商实现利润最大化时的产量、价格及利润量又是多少?与(1)中的结果进行比较。


相似考题
参考答案和解析
答案:
解析:
(1)总成本函数为TC =120 +2Q, 构造利润函数π= PQ -rc, 即π=(100 -Q)Q- (120 +2Q)=- Q2 +98Q -120, dπ/dQ=-2Q+98=0 此时Q =49,P=51,利润π=2281。 (2)构造利润函数: π= PQ - TC - 8Q=-Q2+ 90Q - 120 dπ/dQ=2Q+90=0 此时Q =45,P=55,利润π=1905。 与(1)比较,(2)中的利润量较低,产量降低但价格上升。
更多“假定某厂商的需求函数为Q =100-P,平均成本函数为Ac=120/Q+2。 (1)求该厂商实现利润最大化时的产量、价格及利润量。 (2)如果政府对每单位产品征税8元,那么,该厂商实现利润最大化时的产量、价格及利润量又是多少?与(1)中的结果进行比较。”相关问题
  • 第1题:

    垄断厂商生产某一产品,产品的成本函数为C(q)=q2,市场反需求函数为p=120-q。试求:(1)垄断厂商利润最大化的产量和价格,并画图说明。(2)政府对垄断厂商征收100元的税收后,垄断厂商的产量和价格。(3)政府对垄断厂商单位产品征收从量税2元,垄断厂商的产量和价格。


    答案:
    解析:
    (1)垄断厂商的边际成本函数为MC= 2q,边际收益函数为MR =120 - 2q,根据垄断 厂商利润最大化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为q*一30、 p* =90。如图1 2所示,厂商在MR曲线和MC曲线的交点处确定利润最大化的产量q* =30, 再根据q’对应的市场需求曲线D上的点确定产品的价格p* =90。

    (2)当政府对垄断厂商征收100元税收后,垄断厂商的实际成本函数变为: C(q) =q2+100 但垄断厂商的边际成本函数仍为MC=2q,因而利润最大化的条件不变,因此垄断厂商利润最大 化的产量和价格仍然为q+ =30、p* =90。 (3)当政府对垄断厂商单位产品征收从量税2元后,垄断厂商的实际成本函数变为C(q)一qz+ 2q,边际成本函数则为MC=2q+2,边际收益函数仍为MR =120-2q,根据垄断厂商利润最大 化原则MR =MC,可以解得垄断厂商利润最大化的产量和价格分别为g’=29.5,p* =90.5。

  • 第2题:

    假定某寡头厂商面临一条弯折的需求曲线,产量在0~30单位范围内时需求函数为P=60-0.3Q,产量超过30单位时需求函数为P=66 -0.50;该厂商的短期总成本函数为STC=0.005 Q3-0. 2Q2 +36Q +200。 (1)求该寡头厂商利润最大化的均衡产量和均衡价格。 (2)假定该厂商成本增加,导致短期总成本函数变为STC =0.005Q3 -0.2Q2 +50Q +200,求该寡头厂商利润最大化的均衡产量和均衡价格。 (3)对以上(1)和(2)的结果作出解释。



    答案:
    解析:

    边际成本函数为MC=0.015Q2 -0.4Q+36。 在Q =30时,边际收益的上限和下限分别为42、36。故在产量为30单位时,边际收益曲线间断部分的范围为36—42。 由厂商的边际成本函数可知,当Q =30时,有MC=37.5。 根据厂商的最大化利润原则,由于MC= 37.5处于边际收益曲线间断部分的范围MR=MC为36—42之内,符合利润最大化原则,所以厂商的产量和价格分别为Q=30、P=51。 (2)厂商边际成本函数为MC =0.015Q2-0. 4Q +50。 当Q =30时,MC= 51.5。 超出了边际收益曲线间断部分的范围36~ 42,此时根据厂商利润最大化原则MR= MC,得Q =20,P=54。 (3)由(1)结果可知,只要在Q=30时MC值处于边际收益曲线间断部分36—42范围之内,寡头厂商的产量和价格总是为Q= 30、P=51,这就是弯折曲线模型所解释的寡头市场的价格刚性现象。 只有边际成本超出了边际收益曲线间断部分36—42的范围,寡头市场的均衡价格和均衡产量才会发生变化。

  • 第3题:

    假定某寡头市场有两个厂商生产同种产品,市场的反需求函数为P=100—Q,两个厂商的成本函数分别为TC1=20Q,TC2=0.5Q22。 (1)假定两厂商按古诺模型行动,求两厂商各自的产量和利润量,以及行业的总利润量。 (2)假定两厂商联合行动组成卡特尔,追求共同利润最大化,求两厂商各自的产量和利润量,以及行业的总利润量。 (3)比较(1)与(2)的结果。


    答案:
    解析:
    (1)对于第一个厂商而言: π1= PQ1 - TC1

  • 第4题:

    已知某完全竞争的成本不变行业中的单个厂商的长期总成本函数为LTC= Q3 - 12Q2+40Q。试求: (1)当市场产品价格为P=100时,厂商实现MR= LMC时的产量、平均成本和利润。 (2)该行业长期均衡时的价格和单个厂商的产量。 (3)当市场的需求函数为Q=660 -15P时,行业长期均衡时的厂商数量。


    答案:
    解析:

    故Q=6是长期平均成本最小化的解。 以Q=6代入LAC( Q),得平均成本的最小值为LAC =62 -12 x6+40 =4。 由于完全竞争行业长期均衡时的价格等于厂商的最小的长期平均成本,所以,该行业长期均衡时的价格P=4,单个厂商的产量Q=6。 (3)由于完全竞争的成本不变行业的长期供给曲线是一条水平线,而且相应的市场长期均衡价格是固定的,它等于单个厂商的最低的长期平均成本,所以,本题的市场长期均衡价格固定为P=4。以P=4代入市场需求函数Q=660 -15P,便可以得到市场的长期均衡数量为Q=660 -15 x4= 600。 现已求得在市场实现长期均衡时,市场的均衡数量Q =600,单个厂商的均衡产量Q=6。于是,行业长期均衡时的厂商数量= 600÷6=100。

  • 第5题:

    已知某垄断厂商的短期总成本函数为STC =0. 6Q2+3Q +2,反需求函数为P=8 -0. 4Q: (1)求该厂商实现利润最大化时的产量、价格、收益和利润。 (2)求该厂商实现收益最大化时的产量、价格、收益和利润。 (3)比较(1)和(2)的结果。


    答案:
    解析:

  • 第6题:

    完全竞争行中某厂商的成本函数为TC=Q3-6Q2+30Q+40试求: (1)假设产品价格为66元,利润最大化时的产量及利润总额。 (2)竞争市场供求发生变化,由此决定的新价格为30元,在新价格下,厂商是否会发生亏损?如果会,最小的亏损额为多少? (3)该厂商在什么情况下会停止生产? (4)厂商的短期供给函数。


    答案:
    解析:

  • 第7题:

    某完全竞争厂商的短期边际成本函数为SMC=0.6Q-10,总收益函数为TR =38Q.而且已知产量Q=20时的总成本STC=260. 求:该厂商利润最大化时的产量和利润。


    答案:
    解析:
    由SMC=0.6Q -10可得STC=0.3Q2一10Q+ FC,又因为Q=20时的总成本STC= 260,代入可得FC= 340,从而STC =0.3Q2 -10Q +340。 由总收益函数TR= 38Q可得MR =38。 由利润最大化的条件MR= SMC可得Q=80,利润尺=1580 .

  • 第8题:

    假定某完全竞争行业内单个厂商的短期总成本函数为STC=Q3—8Q2+22Q+90,产品的价格为P=34, (1)求单个厂商实现利润最大化时的产量和利润量: (2)如果市场供求变化使得产品价格下降为P=22,那么,厂商的盈亏状况将如何?如果亏损,亏损额是多少?(保留整数部分) (3)在(2)的情况下,厂商是否还会继续生产?为什么?


    答案:
    解析:

  • 第9题:

    某产品市场的需求曲线为Q=1000-10P,成本函数为C=40Q,下列说法正确的有()。
    Ⅰ.若该产品由一个垄断厂商生产,则利润最大化时产量是300
    Ⅱ.若该产品由一个垄断厂商生产,则厂商最大利润为9000
    Ⅲ.若要实现帕累托最优,相应的产量是600,价格是40
    Ⅳ.在垄断条件下,社会福利的净损失是5000

    A.Ⅰ、Ⅱ
    B.Ⅰ、Ⅲ、Ⅳ
    C.Ⅲ、Ⅳ
    D.Ⅰ、Ⅱ、Ⅲ

    答案:D
    解析:
    垄断厂商进行生产决策的条件为MR=MC,由于TR=PQ=100Q-0.1Q2,所以MR=dTR/dQ=100-0.2Q,MC=dC/dQ=40,进而解得Q=300,P=70,最大利润为:300×70-40×300=9000;价格等于边际成本时实现帕累托最优,P=40,Q=600;垄断条件下消费者剩余为:300 x 30/2—4500,帕累托最优下消费者剩余为:600×60/2=18000,消费者剩余减少18000-4500=13500,垄断利润增加9000,所以社会福利的净损失为:13500-9000=4500。

  • 第10题:

    已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?


    正确答案:(1)由Q=6752-50P,则P=135-1/50Q,Л=TR-TC=PQ-TC=(135-1/50Q)Q-12000-0.0025Q2,当利润最大化时Л=135-1/25Q+0.05Q=0,解得Q=1500,P=105
    (2)最大利润Л=TR-TC=PQ-TC=89250

  • 第11题:

    问答题
    已知某厂商的需求函数为Q=6750-50P,总成本函数为TC=12000+0.025Q2。求: (1)利润最大化时的产量和价格; (2)最大利润是多少?

    正确答案: (1)由Q=6752-50P,则P=135-1/50Q,Л=TR-TC=PQ-TC=(135-1/50Q)Q-12000-0.0025Q2,当利润最大化时Л=135-1/25Q+0.05Q=0,解得Q=1500,P=105
    (2)最大利润Л=TR-TC=PQ-TC=89250
    解析: 暂无解析

  • 第12题:

    问答题
    已知垄断厂商面临的需求曲线是Q=50-3P。  (1)求厂商的边际收益函数。  (2)若厂商的边际成本等于4,求厂商利润最大化的产量和价格。

    正确答案:
    (1)据题意,垄断厂商的反需求函数为:P=50/3-Q/3,所以,厂商的总收益函数为:
    TR=PQ=50Q/3-Q2/3
    则其边际收益函数为:MR=dTR/dQ=50/3-2Q/3。
    (2)由题可知,厂商的边际成本MC=4。根据厂商利润最大化的一般原则,有:MR=MC,即:
    50/3-2Q/3=4
    解得:Q=19。
    将Q=19代入反需求函数P=50/3-Q/3,得:P=50/3-19/3=31/3。
    即厂商利润最大化的产量为Q=19,价格为P=31/3。
    解析: 暂无解析

  • 第13题:

    假定某垄断厂商生产一种产品,其总成本函数为TC=0.SQ2 +10Q +5,市场的反需求函数为P=70 -2Q: (1)求该厂商实现利润最大化时的产量、产品价格和利润量。 (2)如果要求该垄断厂商遵从完全竞争原则,那么,该厂商实现利润最大化时的产量、产品价格和利润量又是多少? (3)试比较(1)和(2)的结果,你可以得出什么结论?


    答案:
    解析:
    (1)厂商边际成本函数为MC=Q+10, 边际收益函数为MR =70 -4Q。 根据利润最大化原则MR =MC, 可知Q =12,P=46,利润π=PQ - TC= 355。 (2)根据完全竞争原则可知P=MC, 可得Q =20,P=30, 此时利润π= PQ - TC= 195。 (3)比较(1)和(2)可知,垄断条件下的利润更大,价格更高,但产量却比较低。

  • 第14题:

    假设一个垄断厂商面临的需求曲线为P =10 -2Q,成本函数为TC= Q2 +4Q。 (1)求利润极大时的产量、价格和利润。 (2)如果政府企图对该厂商采取限价措施迫使其达到完全竞争行业所能达到的产量水平,则限价应为多少?此时该垄断厂商是否仍有利润?


    答案:
    解析:

  • 第15题:

    已知某垄断厂商的反需求函数为P= 100 - 2Q +2

    成本函数为TC =3Q2 +20Q +A,其中,A表示厂商的广告支出。求:该厂商实现利润最大化时Q、P和A的值。


    答案:
    解析:
    由题意可得: π=P·Q- TC

  • 第16题:

    一家垄断厂商具有不变的边际成本C,其面临的市场需求曲线为D(P),具有不变的需求弹性2。该厂商追求利润最大化,回答以下问题:(1)求该厂商制定的垄断价格。此价格与竞争价格相比,有何差异?(2)如果政府对这个垄断厂商每单位产量征收t元的从量税,那么此时价格是多少?与问题(1)中没有税收的情况相比,价格有何变化?如果改为对利润征收税率为r的利润税,价格又将如何变化?

    (3)回到问题(1)中没有税收的情况。如果政府想使垄断厂商生产社会最优产量,考虑对该厂商的边际成本进行补贴,那么该选择怎样的补贴水平?


    答案:
    解析:
    厂商垄断定价规则是:

    则厂商制定的垄断价格(记为Pm)为:

    在竞争市场下,产品价格等于厂商的边际成本,即竞争价格为:Pt=MC=C。 可知,垄断价格高于竞争价格,即Pm>Pc。

    (2)①若政府对垄断厂商每单位产量征税t元,则垄断厂商的边际成本变为MC' =C+t,从而此时的价格为:

    与问题(1)相比,价格上升,P'm >Pm。 ②若政府改为征收利润税,利润税并不改变垄断厂商的边际成本,边际成本仍为C,此时厂商的垄断价格仍为:

    (3)若政府想使垄断厂商生产社会最优产量,则有:

    从而可得:

    因此,政府应对垄断厂商每一单位产出补贴:

    总补贴为:

    为社会最优产量。

  • 第17题:

    已知完全竞争市场上单个厂商的长期成本函数为LTC =Q3-20Q2+200Q,市场的产品价格为P= 600 . (1)该厂商实现利润最大化时的产量、平均成本和利润各是多少? (2)该行业是否处于长期均衡?为什么? (3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各是多少? (4)判断(1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段?


    答案:
    解析:


    所以,当Q =10时,LAC曲线达到最小值。 以Q =10代入LAC函数,可得最小的长期平均成本=102 - 20 x10 +200 =100。 综合(1)和(2)的计算结果,我们可以判断(1)中的行业未实现长期均衡。因为由(2)可知,当该行业实现长期均衡时,市场的均衡价格应等于单个厂商的LAC曲线最低点的高度,即应该有长期均衡价格P =100,而且单个厂商的长期均衡产量应该是Q=10,还应该有每个厂商的利润π=O。而事实上由(1)可知,该厂商实现利润最大化时的价格P=600,产量Q=20,π=8000。显然,该厂商实现利润最大化时的价格、产量和利润都大于行业长期均衡时对单个厂商的要求,即价格600> 100,产量20 >10,利润8000 >0。因此,(1)中的行业未处于长期均衡状态。 (3)由(2)已知,当该行业处于长期均衡时,单个厂商的产量Q=10,价格等于最低的长期平均成本,即有P= LACmin=100,利润L=0。 (4)由以上分析可以判断,(1)中的厂商处于规模不经济阶段。其理由在于:(1)中单个厂商的产量Q =20,价格P=600,它们都分别大于行业长期均衡时单个厂商在LAC曲线最低点生产的产量Q =10和面对的价格P=100。换言之,(1)中的单个厂商利润最大化的产量和价格组合发生在LAC曲线最低点的右边,即LAC曲线处于上升段,所以,单个厂商处于规模不经济阶段。

  • 第18题:

    一厂商分别向东西部两个市场销售Q1与Q2单位的产品。已知厂商的总成本函数为C=5+3(Q1+Q2),东部市场对该产品的需求函数为P1=15-Q1,西部市场对该产品的需求函数为P2=25一2Q2。 如果政府规定,禁止在不同市场上制定不同的价格,求此时该厂商利润最大化时的P1、P2、Q1、Q2以及边际收益、总利润。


    答案:
    解析:

  • 第19题:

    假定某完全竞争厂商的短期总成本函数为STC=0.04Q3-0.4Q2+8Q +9,产品的价格P=12.求该厂商实现利润最大化时的产量、利润量和生产者剩余。


    答案:
    解析:

  • 第20题:

    一厂商分别向东西部两个市场销售Q1与Q2单位的产品。已知厂商的总成本函数为C=5+3(Q1+Q2),东部市场对该产品的需求函数为P1=15-Q1,西部市场对该产品的需求函数为P2=25一2Q2。 如果该厂商可以将东西部市场区分开,在不同的市场制定不同的价格出售,求该厂商利润最大化时的P1、P2、Q1、Q2以及边际收益、总利润。


    答案:
    解析:

  • 第21题:

    已知某完全垄断企业的需求函数为P=17-4Q,成本函数为TC=5Q+2Q2。 (1)计算企业利润最大化的价格和产出、利润。 (2)如果政府实行价格管制,按边际成本定价与按平均成本定价,价格分别是多少?厂商是否亏损?
    (1)当MR=MC 时获得最大利润  即   17-8=5+4Q
    所以Q=1;   P=13   π=TR-TC=PQ-TC=13×1-(5×1+2×12)=6
    (2) MC==5+4Q  AC=5+2Q  当P=AC 17-40=5+2Q    Q=2  P=5+2Q=4+4=9
    则:TC=10+8=18   TR=PQ=9×2=18     所以盈亏持平。
    当P=MC  17-4Q=5+4Q  Q=1.5 P=5+4Q=11  TC=5Q+2Q2=7.5+4.5=12
    TR=PQ=11×1.5=16.5    所以盈利。

  • 第22题:

    问答题
    已知完全竞争市场上单个厂商的长期成本函数为LTC=Q3-20Q2+200Q,市场的产品价格为P=600。 求:(1)该厂商实现利润最大化时的产量、平均成本和利润各是多少? (2)该行业是否处于长期均衡,为什么?(3)该行业处于长期均衡时每个厂商的产量、平均成本和利润各是多少? (4)判断(1)中的厂商是处于规模经济阶段,还是处于规模不经济阶段?

    正确答案: (1)单个厂商总收益TR=PQ=600Q,
    边际收益MR=TR’(Q)=600
    单个厂商边际成本MC=3Q2-40Q+200
    实现利润最大化的条件为MR=MC,
    即600=3Q2-40Q+200,
    解得Q=20或Q=-20/3(舍去)
    此时对应的平均成本LAC=LTC/Q=Q2-20Q+200=20×20-20×20+200=200
    利润=TR-TC=600×20-(203-20×202+200×20)=8000
    (2)完全竞争行业处于长期均衡时利润为0,现在还有利润存在,因此没有实现长期均衡。
    (3)行业处于长期均衡时价格为长期平均成本的最小值。
    LAC=LTC/Q=Q2-20Q+200,LAC对Q求导为0时,LAC出现极值,
    即LAC’(Q)=2Q-20=0,Q=10时候实现长期均衡,此时每个厂商的产量为10
    平均成本LAC=102-20×10+200=100
    利润=(P-LAC.*Q=(100-100)*10=0
    (4)(1)中厂商的产量为20,高于长期均衡时的产量,因此,厂商处于规模不经济状态。
    解析: 暂无解析

  • 第23题:

    问答题
    已知某厂商的生产函数为Q=0.5L1/3K2/3;当资本投入量K=50时资本的总价值为500;劳动的价格PL=5。求:  (1)劳动的投入函数L=L(Q);  (2)总成本函数、平均成本函数和边际成本函数;  (3)当产品的价格P=100时,厂商获得最大利润的产量和利润各是多少?

    正确答案: (1)因为K=50,则Q=0.5L1/3K2/3=0.5L1/3502/3,L=0.0032Q3,此即为劳动的投入函数。
    (2)总成本函数为:TC=PLL+PKK=0.016Q3+500
    平均成本函数为:ATC=TC/Q=0.016Q2+500/Q
    边际成本函数为:MC=dTC/dQ=0.048Q2
    (3)当产品的价格P=100时,厂商的边际收益MR=P=100,由厂商获得最大利润的条件MR=MC,即100=0.048Q2,解得Q≈45.64。
    此时利润:π=PQ-TC=100×45.64-0.016×45.643-500≈2543。
    解析: 暂无解析