itgle.com
参考答案和解析
答案:
解析:
解:(1)由题意知本题是一个分类计数问题.将取出4个球分成三类情况:取4个红

更多“一个口袋内有4个不同的红球,6个不同的白球. ”相关问题
  • 第1题:

    从装有2个红球和2个白球的袋内任取2球,那么互不相容的两个事件是________。

    A.“至少一个白球”与“都是白球”

    B.“至少一个白球”与“至少一个红球”

    C.“恰有一个白球”与“恰有两个白球”

    D.“至多一个白球”与“都是红球”


    正确答案:C
    解析:设“取到红球为1”,“取到白球为0”,则样本空间共有四个样本点,Ω={(0,0),(0,1),(1,0),(1,1)};“至少一个白球”={(0,0),(0,1),(1,0)};“都是白球”={(0,0)};“至多一个白球”=“至少一个红球”={(1,1),(0,1),(1,0)};“都是红球”={(1,1)};“恰有一个白球”={(0,1),(1,0)};“恰有两个白球”={(0,0)),所以答案A、B是相容事件,D是对立事件.C才是互不相容的事件。

  • 第2题:

    (3)一个口袋内装有除颜色外其他都相同的6个白球和4个红球,从中任意摸出2个,求:A、2个都是白球的概率;B、2个都是红球的概率;C、一个白球,一个红球的概率。


    正确答案:
              

  • 第3题:

    一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?

    A.3

    B.120

    C.180

    D.186


    正确答案:D

  • 第4题:

    设口袋中有10只红球和15只白球,每次取一个球,取后不放回,则第二次取得红球的概率为_______.


    答案:
    解析:
    设A1={第一次取红球),A2={第一次取白球),B={第二次取红球),  


      

  • 第5题:

    从5个不同的黑球和2个不同的白球中,任选3个球放入3个不同的盒子中,每盒1球,其中至多有1个白球的不同放法共有( )种

    A.160
    B.165
    C.172
    D.180
    E.182

    答案:D
    解析:

  • 第6题:

    一口袋中有3个红球和2个白球,某人从该口袋中随机摸出一球,摸得红球得5分,摸得白球得2分,则他所得分数的数学期望为( )

    A.2.5;
    B.3.5;
    C.3.8;
    D.以上都不对

    答案:C
    解析:

  • 第7题:

    口袋中放有3只红球和11只黄球,这两种球除颜色外没有任何区别,随机从口袋中任取一只球,取到黄球的概率是______.


    答案:
    解析:

  • 第8题:

    一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是__________。


    答案:
    解析:

  • 第9题:

    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().

    • A、21/90.
    • B、21/45
    • C、21/100
    • D、21/50

    正确答案:B

  • 第10题:

    袋内有红球1个、白球7个,随意从袋中摸出一球,摸到红球事件的信息量为()比特。

    • A、1
    • B、7/8
    • C、1/8
    • D、3

    正确答案:D

  • 第11题:

    单选题
    在一个口袋里有黑球、白球、红球、蓝球各13个,则至少取出几个球才能保证有6个相同颜色的球()
    A

    24

    B

    23

    C

    22

    D

    21


    正确答案: D
    解析: 根据最差原则,先取出黑球、白球、红球、蓝球各5个,最后任意取出1个球,都能保证有6个颜色相同的球。5×4+1=21。

  • 第12题:

    单选题
    口袋里装有10只外形相同的球,其中7只红球,3只白球.从口袋中任意取出2只球,则它们是一只红球、一只白球的概率等于().
    A

    21/90.

    B

    21/45

    C

    21/100

    D

    21/50


    正确答案: C
    解析: 暂无解析

  • 第13题:

    有关C语言的问题

    口袋中有红、黄、蓝、白、黑五种颜色的球若干,每次从口袋中取出3个球。问得到三种不同颜色球的可能选取方法,打印出三种颜色的各种组合。


    循环遍历即可。if (i != j && j !=k && k!=i) -- 三种不同颜色的条件#include <stdio.h>#include <stdlib.h>void main(){int i,j,k,n=0;char c[5][7]={"red","yellow","blue","white","black"};for (i=0;i<5;i++)for (j=i+1;j<5;j++)for (k=j+1;k<5;k++){ if (i != j && j !=k && k!=i) printf("%s %s %s\n",c[i],c[j],c[k]); n++;};printf("n=%d",n);}得:red yellow bluered yellow whitered yellow blackred blue whitered blue blackred white blackyellow blue whiteyellow blue blackyellow white blackblue white blackn=10

  • 第14题:

    在一个口袋中有10个黑球、6个白球、4个红球,至少从中取出多少个球才能保证其中有白球?

    A.14

    B.15

    C.17

    D.18


    正确答案:B
    [答案] B。解析:抽屉原理,最坏的情况是10个黑球和4个红球都拿出来了,第15次拿到的肯定是白球。

  • 第15题:

    现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球,(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.


    答案:
    解析:

  • 第16题:

    袋中有12只球,其中红球4个,白球8个,从中一次抽取两个球,求下列事件发生的概率:
      (1)两个球中一个是红球一个是白球;
      (2)两个球颜色相同.


    答案:
    解析:
    【解】(1)令A={抽取的两个球中一个是红球一个是白球},则.
    (2)令B={抽取的两个球颜色相同},则

  • 第17题:

    甲盒内有红球4只,黑球2只,白球2只;乙盒内有红球5只,黑球3只;丙盒内有黑球2只,白球2只,从这三只盒子的任意一只中任取出一只球,它是红球的概率是( )

    A.0.5625
    B.0.5
    C.0.45
    D.O.375
    E.0.225

    答案:D
    解析:

  • 第18题:

    一个口袋中有4个白球,1个红球,7个黄球.搅匀后随机从袋中摸出1个是白球的概率是_________.


    答案:
    解析:

  • 第19题:

    一个口袋中有7个红球3个白球,从袋中任取一球,看过颜色后是白球则放回袋中,直至取到红球,然后再取一球,假设每次取球时各个球被取到的可能性相同,求第一、第二次都取到红球的概率( )。

    A.7/10
    B.7/15
    C.7/20
    D.7/30

    答案:B
    解析:
    设AB分别表演一、二次取红球,则有P(AB)=P(A)P(B|A)=7/106/9=7/15。

  • 第20题:

    已知一个口袋里有5个红球,6个白球,7个黑球,则至少取出多少个球才能保证有一个红球和一个白球?()

    • A、3个
    • B、9个
    • C、13个
    • D、14个

    正确答案:D

  • 第21题:

    一口袋有6个白球,4个红球,“无放回”地从袋中取出3个球,则事件“恰有两个红球”的概率为()


    正确答案:3/10

  • 第22题:

    问答题
    8.袋中有7个球,其中红球5个白球2个,从袋中取球两次,每次随机地取一个球,取后不放回,求:    (1)第一次取到白球、第二次取到红球的概率;    (2)两次取得一红球一白球的概率.

    正确答案:
    解析: 暂无解析

  • 第23题:

    单选题
    已知一个口袋里有5个红球,6个白球,7个黑球,则至少取出多少个球才能保证有一个红球和一个白球?()
    A

    3个

    B

    9个

    C

    13个

    D

    14个


    正确答案: D
    解析: 暂无解析