itgle.com
参考答案和解析
所以 又因Y i ~N(0,9),故 且Y 1 ,…,Y 9 相互独立,得 又因 相互独立,故 处理 的原则是:“先标准化再平方”,而处理 的方法是:“先加起来再标准化”,这是因为正态分布有线性变换下仍为正态分布这一好性质,而数理统计的几个特殊分布( 、t、F分布)都是建立在N(0,1)的基础之上.中间的两次“独立性”勿忘了说,因为 、t、F分布的构成中都有“独立性”的要求,请勿忽视.
更多“设X~N(0, 1),Y与X独立同分布,令Z=X+Y,则Z服从的分布为”相关问题
  • 第1题:

    设D={(x,y)|0,
      (1)令U=X+Z,求U的分布函数.
      (2)判断X,Z是否独立.


    答案:
    解析:

  • 第2题:

    随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为令Z=XY。p为何值时,X与Z不相关


    答案:
    解析:

  • 第3题:

    设随机变量X~N(μ,σ^2),Y~U[-π,π],X,Y相互独立,令Z=X+Y,求fz(z).


    答案:
    解析:

  • 第4题:

    设随机变量(X,Y)在区域D={(z,y)|0≤x≤2,0≤y≤1}上服从均匀分布,令
      U=,V=.
      (1)求(U,V)的联合分布;(2)求.


    答案:
    解析:

  • 第5题:

    设随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为P{Y=-1}=p,P{Y=1)=1-p,(0  (Ⅰ)求Z的概率密度;
      (Ⅱ)p为何值时,X与Z不相关;
      (Ⅲ)X与Z是否相互独立?


    答案:
    解析:

  • 第6题:

    设二维随机变量(X,Y)在区域上服从均匀分布,令
      (Ⅰ)写出(X,Y)的概率密度;
      (Ⅱ)请问U与X是否相互独立?并说明理由;
      (Ⅲ)求Z=U+X的分布函数F(z).


    答案:
    解析:

  • 第7题:

    设随机变量X和Y相互独立,都服从正态分布N(μ,σ2),令ξ=X+Y,η=X−Y,则ξ和η的相关系数为()。

    • A、-4/9
    • B、-1/2
    • C、1/2
    • D、0
    • E、5/9

    正确答案:C

  • 第8题:

    若随机变量X与Y相互独立,且X服从N(1,9),Y服从N(2,6),则X+Y服从()分布。


    正确答案:N(3,25)

  • 第9题:

    若随机变量X~N(0,4),Y~N(-1,5),且X与Y相互独立。设Z=X+Y-3,则Z~()。


    正确答案:N(-4,9)

  • 第10题:

    设随机变量X,Y相互独立,且均服从[0,1]上的均匀分布,则服从均匀分布的是()。

    • A、XY
    • B、(X,Y)
    • C、X—Y
    • D、X+Y

    正确答案:B

  • 第11题:

    设X,Y相互独立,且都服从标准正态分布N(0,1),令Z=X2+Y2则Z服从的分布是().

    • A、N(0,2)分布
    • B、单位圆上的均匀分布
    • C、参数为1的瑞利分布
    • D、N(0,1)分布

    正确答案:C

  • 第12题:

    单选题
    设随机变量X和Y相互独立,都服从正态分布N(μ,σ2),令ξ=X+Y,η=X−Y,则ξ和η的相关系数为()。
    A

    -4/9

    B

    -1/2

    C

    1/2

    D

    0

    E

    5/9


    正确答案: D
    解析: 暂无解析

  • 第13题:

    随机变量X与Y相互独立,X服从参数为1的指数分布,Y的概率分布为令Z=XY。X与Z是否相互独立


    答案:
    解析:
    因为

  • 第14题:

    设X,Y相互独立且都服从(0,2)上的均匀分布,令Z=min{X,Y},则P(0

    答案:
    解析:
    由X,Y在(0,2)上服从均匀分布得  
    因为x,Y相互独立,所以
      Fz(z)=P(Z≤z)=1-P(Z>z)=1-P(min{X,Y)}>z)=1-P(X>z,Y>z)
      =1-P(X>z)P(Y>z)=1=【1-P(X≤z)】【1-P(Y≤z)】
      =1-【1-Fx(z)】【1-FY(z)】,

  • 第15题:

    设随机变量X~N(1,2),Y~N(-1,2),Z~N(0,9)且随机变量X,Y,Z相互独立,已知a(X+Y)2+bZ2~χ2(n)(ab≠O),则a=_______,b=_______,Z=_______.


    答案:
    解析:
    由X~N(1,2),Y~N(-1,2),Z~N(0,9),得X+Y~N(0,4),且,故.

  • 第16题:

    设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y的概率分布为P{Y=0}=P{Y=1}=.记Fz(z)为随机变量Z=XY的分布函数,则函数Fz(z)的间断点个数为

    A.A0
    B.1
    C.2
    D.3

    答案:D
    解析:

  • 第17题:

    设随机变量X与Y相互独立,X的概率分布为P{X=1}=P{X=-1}=,Y服从参数为λ的泊松分布.令Z=XY.
      (Ⅰ)求Cov(X,Z);
      (Ⅱ)求Z的概率分布.


    答案:
    解析:

  • 第18题:

    设随机变量X,Y相互独立,且X的概率分布为P{X=0)=P{X=2)=,Y的概率密度为
      (Ⅰ)求P{Y≤EY};
      (Ⅱ)求Z=X+Y的概率密度.


    答案:
    解析:

  • 第19题:

    设随机变量X和Y都服从N(0,1)分布,则下列叙述中正确的是()。

    • A、X+Y服从正态分布
    • B、X2+Y2~x2分布
    • C、X2和Y2都服从X2分布
    • D、分布

    正确答案:C

  • 第20题:

    设随机变量X与Y相互独立,且X~N(1,2),Y~N(0,1)。令Z=-Y+2X+3,则D(Z)=()。


    正确答案:9

  • 第21题:

    设X服从0—1分布,P=0.6,Y服从λ=2的泊松分布,且X,Y独立,则X+Y().

    • A、服从泊松分布
    • B、仍是离散型随机变量
    • C、为二维随机向量
    • D、取值为0的概率为0

    正确答案:B

  • 第22题:

    设随机变量X,Y相互独立,其中X在[0,6]上服从均匀分布,Y服从参数为λ=3的泊松分布,记Z=X-2Y,则D(Z)=()。


    正确答案:15

  • 第23题:

    对于两个独立的随机变量X,Y服从正态分布,即X~N(4,9),Y~N(1,4),则Z=X+Y服从()分布。

    • A、Z~N(4,9)
    • B、Z~N(3,5)
    • C、Z~N(5,13)
    • D、Z~N(5,5)

    正确答案:C

  • 第24题:

    问答题
    设X1,X2,…,Xn相互独立且同服从分布B(1,p),Z=X1+X2+…+Xn,证明Z~B(n,p)。

    正确答案:
    利用数学归纳法。
    当k=2时,X1+X2=Z~B(2,p)。
    假设当k=n-1时,X1+X2+…+Xn-1=Z1~B(n-1,p)。
    则当k=n时,Z=(X1+X2+…+Xn-1)+Xn=Z1+Xn,Z~B(n-1+1,p),即Z~B(n,p)。
    解析: 暂无解析